Lower bounds for the condition number of a real confluent Vandermonde matrix

نویسنده

  • Ren-Cang Li
چکیده

Lower bounds on the condition number κp(Vc ) of a real confluent Vandermonde matrix Vc are established in terms of the dimension n or n and the largest absolute value among all nodes that define the confluent Vandermonde matrix or n and the interval that contains the nodes. In particular, it is proved that for any modest kmax (the largest number of equal nodes), κp(Vc ) behaves no smaller than On((1+ √ 2 )n), and than On((1+ √ 2 )2n) if all nodes are nonnegative. It is not clear whether those bounds are asymptotically sharp for modest kmax. This report is available on the web at http://www.ms.uky.edu/∼math/MAreport/PDF/2004-10.pdf. Department of Mathematics, University of Kentucky, Lexington, KY 40506 ([email protected].) This work was supported in part by the National Science Foundation CAREER award under Grant No. CCR-9875201.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotically Optimal Lower Bounds for the Condition Number of a Real Vandermonde Matrix

Lower bounds on the condition number minκp(V ) of a Vandermonde matrix V are established in terms of the dimension n or n and the largest absolute value among all nodes that define the Vandermonde matrix. Many bounds here are asymptotically sharp, and compare favorably to those of the same kind due to Gautschi and Inglese (Numer. Math., 52 (1988), 241–250) who considered either all positive nod...

متن کامل

Vandermonde Matrices with Chebyshev Nodes

For n × n Vandermonde matrix Vn = (αi−1 j )1≤i j≤n with translated Chebyshev zero nodes, it is discovered that V T n admits an explicit QR decomposition with the R-factor consisting of the coefficients of the translated Chebyshev polynomials of degree less than n. This decomposition then leads to an exact expression for the condition number of its submatrix Vk,n = (αi−1 j )1≤i≤k,1≤j≤n (so-calle...

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

Stability analysis of algorithms for solving confluent Vandermonde-like systems

A confluent Vandermonde-like matrix P(a0, a, an) is a generalisation of the confluent Vandermonde matrix in which the monomials are replaced by arbitrary polynomials. For the case where the polynomials satisfy a three-term recurrence relation algorithms for solving the systems Px b and Pra f in O(n2) operations are derived. Forward and backward error analyses that provide bounds for the relativ...

متن کامل

Stability Analysis of Algorithms for Solving Confluent

A confluent Vandermonde-like matrix P(a0, a, an) is a generalisation of the confluent Vandermonde matrix in which the monomials are replaced by arbitrary polynomials. For the case where the polynomials satisfy a three-term recurrence relation algorithms for solving the systems Px b and Pra f in O(n2) operations are derived. Forward and backward error analyses that provide bounds for the relativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2006